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Abstract mulation.

NFA uses a cartesian-grid formulation with
A combination of cartesian-grid methods and volume-of- immersed-body and volume-of-fluid (VOF) methods.
fluid methods is used to simulate breaking waves around The governing equations are formulated on a cartesian
ships and the resulting hydrodynamic forces. A surface grid thereby eliminating complications associated with
panelization of a ship hull is used as input to automat- body-fitted grids. The sole geometric input into NFA
ically generate an immersed-boundary representation of is a surface panelization of the ship hull. No additional
the geometry on a cartesian grid. No additional gridding gridding beyond what is already used in potential-flow
beyond what is already used in potential-flow methods methods and hydrostatics calculations is required. The
and hydrostatics calculations is required. The volume- ease of input in combination with a flow solver that is
of-fluid portion of the numerical algorithm is used to cap- implemented using parallel-computing methods permit
ture the free-surface interface, including the breaking of the rapid turn around of numerical simulations of
waves, the formation of spray, and the entrainment of air. complex interactions between free surfaces and ships.
The numerical scheme is implemented on a parallel com- Based on Colella et al. (1999) and Sussman & Dom-
puter. The numerical simulations are compared to analyt- mermuth (2001), free-slip boundary conditions are im-
ical solutions and experimental measurements. Together, posed on the surface of the ship hull. A surface repre-
the ease of input and usage, the ability to model and re- sentation of the ship hull is used as input to construct
solve complex free-surface phenomena, and the speed of a three-dimensional signed-distance representation. The
the numerical algorithm provide a robust capability for signed-distance gsiged-istncefunction is used to calculate how the ship
simulating the free-surface disturbances near a ship. hull cuts through the cartesian grid. The resulting frac-

tional areas and volumes are then used in a finite-volume

Introduction method to project the flow velocity onto a solenoidal
field and to impose the hull boundary conditions. The
fractional areas and volumes of very small cells are

The Numerical Flow Analysis (NFA) code provides merged to improve the conditioning of the Poisson solver
turnkey capabilities to model breaking waves around (Mampaey & Xu 1995). Free-slip boundary conditions
a ship, including both plunging and spilling breaking are also imposed along the sides and at the top and bot-
waves, the formation of spray, and the entrainment of air. tom of the computational domain. At the exit, Orlanski-
The basic details of the numerical algorithm are provided like boundary conditions are imposed (Orlanski 1976).
in Sussman & Dommermuth (2001), and Dommermuth At the entrance, a wavemaker is used to generate ambi-
et al. (2004), and Dommermuth et al. (2006). An eval- ent waves. The ambient waves are accurate to second or-
uation of NFAs capabilities is provided in Wilson et al. der in wave steepness. The water-particle velocity in the
(2006). Here, the numerical formulation of NFA will be water and air, and the free-surface elevation is assigned
discussed in detail, including the treatment of the hull at the entrance to the computational domain.
boundary condition and the update of the free-surface el-
evation. The calculation of hydrodynamic forces and the heidnisnstetceaon t care aesousin
modeling of nonlinear incident waves will be used to il- ne-diesio lliptc euatost iprve sui
lustrate the accuracy and stability of the numerical for-



from the ship and the free-surface interface, where the ui and xi are normalized by U, and Lo, which denote
flow is less complicated, the mesh is coarser. Details of the free-stream velocity and the length of the body, re-
the grid stretching algorithm, which uses weight func- spectively. The frame of reference is fixed with respect
tions that are specified in physical space, are provided in to the initial position of the ship's fore perpendicular. A
Knupp & Steinerg (1993). right-handed coordinate system is used with x positive

The VOF portion of the numerical algorithm is used forward and z positive upward.

to track the free-surface interface, including the large- Following a procedure that is similar to Rider et al.
scale effects of breaking waves, spray formation and (1994), we let 0 denote the fraction of fluid that is inside
air entrainment. The interface tracking of the free sur- a cell. By definition, 0 = 0 for a cell that is totally filled
face is second-order accurate in space and time. At with air, and 0 = 1 for a cell that is totally filled with
each time step, the position of the free surface is re- water.
constructed using piece-wise planar surfaces (Rider et al. The advection of 0 is expressed as follows:
1994, Gueyffier et al. 1999). The advection portion of the
VOF algorithm uses an operator-split method (Puckett 00 a OQ
et al. 1997). The advection algorithm implements a cor- + [(uj + u , (2)
rection to improve mass conservation when the flow is
not solenoidal due to numerical errors. Q is a sub-grid-scale flux which can model the entrain-

The convective terms in the momentum equations ment of gas into the liquid. Dommermuth et al. (1998)

are treated using a slope-limited, third-order QUICK provide details of a sub-grid model that is appropriate for

scheme as discussed in Leonard (1997). A Smagorin- interface capturing methods that allow mixing of air and

sky turbulence model is also implemented. There are no water. Q = 0 for the present formulation.

special treatments required to model either the flow sepa- Let pf and pf respectively denote the density and
ration at the transom or the wave overturning at the bow. dynamic viscosity of water. Similarly, pg and pg are the
A second-order, variable-coefficient Poisson equation is corresponding properties of air. The flows in the water
used to project the velocity onto a solenoidal field. A pre- and the air are governed by the Navier-Stokes equations:
conditioned conjugate-gradient method is used to solve
the Poisson equation. dui + [Puj+Uj

NFA is written in Fortran 90. The governing equa- dt Oxj P Oxi

tions are solved using a domain-decomposition method. 1 9 i&3 , (
The domains are distributed over the nodes of a paral- pR T2p _ OXj
lel computer. Communication between processors on the
Cray XT3 is performed using either Crays shared mem- where R, = pfU 0Lo/pf is the Reynolds number and
ory access library (SHMEM). NFA also runs on clusters F,2 

= U,/(gLo) is the Froude number. g is the accel-
using MPI. The CPU requirements are linearly propor- eration of gravity. 6i3 is the Kronecker delta function.
tional to the number of grid points and inversely propor- P is the pressure. As described in Dommermuth et al.
tional to the number of processors. Together, the ease of (1998), Trij is the subgrid-scale stress tensor. Sij is the
input and usage, the ability to model and resolve complex deformation tensor:
free-surface phenomena, and the speed of the numerical
algorithm provide a robust capability for simulating the =j - + (4)
free-surface disturbances near a ship. 2 Oxj Oxi

p and p are respectively the dimensionless variable den-

Formulation sities and viscosities:

Consider turbulent flow at the interface between air and (o) = + (1 - (5)

water. A two-phase formulation of the Navier-Stokes p(O) = q + (I - q)H(O) (5)

equations is used to model a ship moving with constant where A = pg/pf and iq = pg/pf are the density and vis-
forward speed with incident waves. Let ui denote the cosity ratios between air and water. For a sharp interface,
three-dimensional velocity field as a function of space with no mixing of air and water, H is a step function. In
(xi = (x, y, z)) and time (t). vi is the velocity of the practice, a mollified step function is used to provide a
ship. vi includes the effects of rigid-body translation and smooth transition between air and water.
rotation. Let Ui denote the free-stream current. For an
incompressible flow, the conservation of mass gives A no-flux condition is imposed on the surface of the

ship hull:
Oui  0 (1) uini + Uini = Vini (6)-- i



where ni denotes the normal to the ship hull that points and the volume fraction is advanced to complete the al-
into the fluid. gorithm:

As discussed in Dommermuth et al. (1998), the di- k

vergence of the momentum equations (3) in combina- ok+1 = ok - VOF U* + Ui q, At) (13)
tion with the conservation of mass (1) provides a Poisson 2

equation for the dynamic pressure:
GRIDDING

a 1 OP
xi p - , (7) Along the cartesian axes, one-dimensional stretch-

ing is performed using a differential equation. Let x de-
where E is a source term. As shown in the next sec- note the position of the grid points in physical space, and
tion, the pressure is used to project the velocity onto a let denote the position of the grid points in a mapped
solenoidal field. space. As shown by Knupp & Steinerg (1993), the dif-

ferential equation that describes grid stretching in one di-
NUMERICAL TIME INTEGRATION mension is as follows:

Based on Sussman (2003a), a second-order Runge- + 1 - 0 (14)

Kutta scheme is used to integrate with respect to time the a 2  w a a
field equations for the velocity field. Here, we illustrate where w(x) is a weight function that is specified in phys-
how a volume of fluid formulation is used to advance ical space. For example, suppose the grid spacing is con-
the volume-fraction function. Similar examples are pro- stant but different for x < x. and x > x1 . Between
vided by Rider et al. (1994). During the first stage of the x, < diff ere is a tr an d z > one gridxo < x _< x1 , there is a transition zone from one grid
Runge-Kutta algorithm, a Poisson equation for the pres-sure is solved: spacing to the next. Then the following weight function

may be used to describe this distribution of grid points:
a 1 apk a '(k

ax, p(+5k) ax) x, At (8) w(x) = wo for x <xo

where Ri denotes the nonlinear convective, hydrostatic, 2 X - X0 )
viscous, and sub-grid-scale terms in the momentum + w, for x0 < x < x,
equations. ui, pk, and Pk are respectively the veloc-
ity components, density, and pressure at time step k. At w(x) = w1 for x > x, (15)

is the time step. Using this approach, multiple zones of grid clustering

For the next step, this pressure is used to project the may be specified. For example, along the x-axis (xi in
velocity onto a solenoidal field. The first prediction for indical notation), grid points may be clustered near the
the velocity field (u*) is bow and stern. For the y-axis (x2 in indical notation),

I k1 pk grid points are clustered near the centerline out beyond
. k A 1 O ,)the half beam. Finally, for the z-axis (x3 in indical no-ui = ui + At ti - p(o) Ox, (9) tation), grid points are clustered near the mean waterline

in a region that is between the top and bottom of the ship
The volume fraction is advanced using a volume of fluid hull. Note that equation 14, is a nonlinear equation that
operator (VOF): is solved iteratively.

* - vo F k, ok At) (10)
ENFORCEMENT OF BODY BOUNDARY CONDITIONS

Details of the VOF operator are provided later. A Pois-son equation for the pressure is solved again during the A no-flux boundary condition is imposed on the sur-
second stage of the Runge-Kutta algorithm: face of the body using a finite-volume technique. Asigned distance function b is used to represent the body.

a 1 a a k, b is positive outside the body and negative inside the
ax1p& * u' u + R,) (11) body. The magnitude of b is the minimal distance be-

/ tween the position of b and the surface of the body. b is
ui is advanced to the next step to complete one cycle of zero on the surface of the body. b is calculated using a
the Runge-Kutta algorithm: surface panelization of the hull form. Green's theorem is

used to indicate whether a point is inside or outside the
k+1 k+At - 1 aP* body, and then the shortest distance from the point to the

= 2 ti p(O*) Ox) surface of the body is calculated. Triangular panels are



used to discretize the surface of the body. The shortest INTERFACE RECONSTRUCTION AND ADVECTION

distance to the surface of the body can occur on either
a surface, edge, or vertice of a triangular panel. Details In our VOF formulation, the free surface is recon-
associated with the calculation of b are provided in Suss- structed from the volume fractions using piece-wise lin-
man & Dommermuth (2001). ear polynomials. The reconstruction is based on algo-

rithms that are described by Gueyffier et al. (1999). The
Cells near the ship hull may have an irregular shape, surface normals are estimated using weighted central dif-

depending on how the surface of the ship hull cuts the ferencing of the volume fractions. A similar algorithm is
cell. On these irregular boundaries, the finite-volume ap- described by Pilliod & Puckett (1997). Near the body,

proach is used to impose free-slip boundary conditions. cribe by o ucett whose he body,
Letcare must be taken to use cells whose volume fraction is
Lhet bdyandltS, denote theportn other s surfaces exterior to the body in the calculation of the normal to
the body, and let S denote the other bounding surfaces the free-surface interface. The advection portion of the
of the cell that are not on the body. Gauss's theorem is algorithm is operator split, and it is based on similar al-
applied to the volume integral of equation 8: gorithms reported in Puckett et al. (1997). Major differ-
fni pk _uNni ences between the present algorithm and earlier methods

Io+Sb ds W) OP = IS0 + ds ( At + Rini) (16) include special treatments to account for the body and to
alleviate mass-conservation errors due to the presence of

Here, n denotes the components of the unit normal on non-solenoidal velocity fields.
the surfaces that bound the cell. Based on equation 9, a
Neumann condition is derived for the pressure on 5

b as LeF dntflxhruhheacsoacl.F ifollows: expressed in terms of the relative velocity (ui + Ui - vi)follos and the areas of the faces of the cell (A) that are cut by
ni O _ u* ni +u +in (17) the ship hull:

p(ok) OX, At At

The Neumann condition for the velocity (6) is substituted Fi = Ai (ui + Ui - vi) (20)

into the preceding equation to complete the Neumann If the ship hull does not cut the cell, then Ai correspond
condition for the pressure on Sb: to the surface areas that bound the cell. Near the ship

ni Opk _ k hull, Ai is some fraction of the surface areas that bound
p(U5k) O At At A t + Rini - (18) the cell. Note that Ai = 0 inside the ship hull. Based onan application of Gauss's theorem to the volume integral

This Neumann condition for the pressure is substituted of Equation I and making use of Equation 6:
into the integral formulation in equation 16:

f 1 0pk . k_ F - F-i-= , (21)dspO) ni ds U i+ Rini
is, P(k I a U- iso ( A where E+ is the flux on the positive i-th face of the cell

Sd,(v n and Fi- is the flux on the negative i-th face of the cell.
+ b At Due to numerical errors, equation 21 is not necessarily

This equation is solved using the method of fractional satisfied. Let S denote the resulting numerical error for

areas. Details associated with the calculation of the any given cell. For each cell whose flux is not conserved,a correction is applied prior to performing the VOF ad-
area fractions are provided in Sussman & Dommermuth acortinsaplepirtoefrmgth Oad
area) factonswit ar ddinl Sufsn & s D omeut vection. For example, the following reassignment of the
(2001) along with additional references. Cells whose cut fu ln h etcldrcinesrsta h eeie

volume is less than 25% of the full volume of the cell are

merged with neighbors. The merging occurs along the flux is conserved:

direction of the steepest gradient of the signed-distance E A +

function b. This improves the conditioning of the Pois- F+ = +_ A+ + A-
son equation for the pressure. As a result, the stability of
the projection operator for the velocity is also improved = + A 223
(see equations 9 and 12). 4 + A 22

As the ship moves due to force motions or in re-As te sip mvesdue o frce otins o inre- Based on this new flux, new relative velocities are de-
sponse to incident waves, the signed-distance function Baed on the f loes ar de-
b and the fractional areas and volumes are recalculated

each time step. In the case of forced motions, the signed- AxiF(
distance function can be precalculated over the range of ft - V (23)
motion, then interpolation can be used during the simula-
tion to calculate the signed-distance function to improve where Ax, is the grid spacing and V = Ax 1 Ax2 Ax 3
efficiency. is the volume of the cell. Away from the ship hull, fii



is the relative velocity plus a corrective term to conserve on VOF reconstruction is as follows:
mass. Inside the ship hull, ii = 0 because Ai = 0. Near
the ship hull, ui is scaled by the fraction of area that is = OoAz (25)
cut by the presence of the ship hull. ui is continuous
across the faces of the cells along x- and y-axes, but In contrast, if the cell above is filled with air. then based

discontinuous across the faces along the z-axis because on the 0.5 isosurface, the height of the free-surface inter-

in this particular example that is the axis where the flux face is
has been corrected. (3 1)

Equation 2 is operator split. A dilation term is added I7= 2 70Az . (26)
to ensure that the volume fraction remains between 0 <
0 < 1 during each stage of the splitting (Puckett et al. The maximum difference between equations 25 and 26
1997). The resulting discrete set of equations for the first occurs when 0, = 3/4. The error at this point is about
stage of the time-stepping procedure is provided below: 11% higher for 0.5 isosurface relative to VOF reconstruc-

tion. If the volume fraction is less than 0 < 0.5 within
[ ,, At] _ f- At, ,] a cell and its neighbors, then the 0.5 isosurface does not

= 4k _ K'' even exist. This is problematic in visualizations of turbu-
V lent flows with lots of spray because droplets and sheets

+ A_ +  -
)  of water can suddenly appear and disappear.

Axl

A+)t A ] - f 2 [(), At] RADIATION CONDITIONS

V Exit boundary conditions are required in order to

k( + )  (u - ) k conserve mass and flux. For ships with forward speed, an
+ Ato - 2 Orlanski-like formulation (Orlanski 1976) provides the

AX2  necessary radiation condition.

aL x U - =0. (27)

At- (24) U, is the free-stream current along the x-axis, and ul
AX3  is the water-particle velocity along the x-axis. For the

other components of velocity and the volume fraction,
fT denotes VOF advection based on the uncut areas of zero gradients are imposed at the exit of the computa-
the faces of the cell. As an example, for a cell that is full tional domain:
of water, f 1 (ul, 0, At) = Out AtAx2 Ax 3 . The dila-
tion term is treated explicitly in the first two parts of the a02 _ aU3 = a00 (28)
operator-split algorithm and implicitly in the last part of Ox Ox Ox
the preceding equation. Note that the order of the split- Neumman conditions are specified for the pressure in a
ting is alternated from time step to time step to preserve manner that is very similar to the imposition of free-slip
second-order accuracy. conditions on the ship hull (see equations 16 thru 19).

Based on the x-component of momentum,

INTERFACE VISUALIZATION IaP O 1  (29)

The free-surface interface that is reconstructed from

the volume fractions is most often calculated and visual- Upon substitution of equation 27 into the preceding
ized using commercial codes. Specifically, commercial equation, the following Neumann condition is derived for
codes calculate the 0.5 isosurface of the volume-fraction the pressure at the exit of the computational domain:

function 0. The free-surface interface that is calculated
from the 0.5 isosurface is different from the free-surface 1 a = 1
interface that is reconstructed from the volume fractions. p Ox O ax
To illustrate this point, consider a cell whose volume
fraction 0 is between half full and full, 0.5 < 0, < 1. This equation is substituted into the set of finite-volume
Let Az denote the height of the cell. Assume that the equations that govern the pressure (see equation 19).
free-surface interface is horizontal and that all the fluid Equations 27 thru 30 prevent the reflection of distur-
is sitting in the bottom of the cell. Then the height of the bances back into the interior of the computational do-
free-surface interface above the bottom of the cell based main. However, these equations do not guarantee the



conservation of mass. In order to conserve mass, a re- the VOF advection. Typically, C = 0.45 in the numeri-
gridding procedure is introduced when there are no in- cal results that are presented in this paper. If the Courant
cident waves. The initial volume fraction is integrated condition is exceeded, the magnitude of the velocity is
for the grid cells that are on the leading edge of the reduced such that the Courant condition is satisfied. This
computational domain. This integrated quantity is used clipping of the velocity field tends to occur in regions
to maintain a constant mean water level at the entrance where fine spray is formed, especially in the rooster-tail
to the computational domain. At the end of each time region.
step, changes in the integrated volume fraction are cal-
culated. Any changes in the integrated volume fraction TREATMENT OF CONVECTIVE TERMS
are eliminated by imposing a vertical velocity that brings
the mean water level at the leading edge back into align- The convective terms in the momentum equations
ment. The velocity correction is used to move the volume (see Equation 3) are calculated using a slope-limited,
fractions over the entire computational domain either up QUICK, finite-difference scheme (Leonard 1997). Spe-
or down, depending on the situation. A VOF method is cial treatments are required near the ship hull. One pos-
used to move the volume fractions. The VOF method en- sibility is to use one-sided differencing. However, one-
sures that the free-surface interface remains sharp during sided differencing is often unstable. Another possibility
the regridding process. is to extend the velocity of the fluid into the ship hull.

In this case, setting the velocity equal to zero inside the
INITIAL TRANSIENTS body is stable, but too "sticky." Another possibility is to

extend the fluid velocity into the ship hull in such a man-
Initial transients are minimized using an adjustment ner that the no-flux condition is met right at the ship hull.

procedure. An analysis of adjustment procedures as it The interior flow that meets this condition is as follows:
applies to free-surface problems is provided in Dommer-
muth (1994) and Dommermuth (2000). Let f (t) denote ui = [(vj - Uj)nj] ni (34)
the adjustment factor as a function of time, then f(t) and
its derivative f'(t) are by definition where recall that vj is velocity of the body, Ui is the

velocity of the free-stream current, and nj is the unit

)= 1 - exp(()2) normal that points along gradient of the signed-distance
f(t) function (i). At the ship hull, uini = vini - Uini using

f'(t) = 2 exp(-( --)2)  (31) this formulation of the interior flow.

where T, is the adjustment time. DENSITY SMOOTHING

For a ship hull that is oscillating up and down, the The density as a function of the volume fraction is
vertical motion (z) and vertical velocity (w) of the ship smoothed using a three-point stencil (1/4,1/2,1/4) that is
hull are applied consecutively along each of the cartesian axes.

This improves the conditioning of the Poisson equation
z = Asin(Lwt)f(t) (Equations 8 & 11). If the density is smoothed, then the

w = A cos(Lyt)f(t) + Asin(t)f'(t) . (32) same smoothed density must be used in the projection
steps (Equations 9 & 12).

A is the amplitude and Lw is the frequency of the ver-
tical motion. A similar procedure is used for forced roll
and pitch motions. The free-stream current is also slowly CALCULATION OF FORCES
ramped up to speed. The forces Fi acting on the ship hull are calculated

in two parts based on integration of the normal and tan-
ENFORCEMENT OF COURANT CONDITIONS gential stresses over the surface of the ship.

The momentum equations are integrated in time us- -F [dP +d(
ing an explicit Runge-Kutta algorithm. As a result, a = (35)

Courant condition must be enforced for the maximum
total velocity: where the normal stress is expressed in terms of the pres-

sure P, and the tangential stress ri is expressed in terms
ui + U < C tA i  (33) of the water-particle velocity just outside the boundary

At layer of the ship.

C is a coefficient that ensures that the Courant condi- 1
tion is satisfied for both the momentum equations and Ti = Cf 2 PU(ui + Ui - vi) (36)



where cf is the friction coefficient based on the ITTC For z > ql, the horizontal and vertical components of the
line. air-particle velocity are

cf = 0.075(1og(R,) - 2) (37) cosh(k(z - h))
tU(X, z, t) = aLwf (t) cohkz-h)cos(kx + at)

UI is the magnitude of the water-particle velocity. si h(kh)

U1 = /(ui + Ui - vi)(ui + Ui - vi) w(x, z,t) = aLf(t) s i n h(k (z -h)) sin(kx + at)sinh(kh)

Note that (ui + Ui - vi)ni = 0. Similarly, the moments (44)
Mi are expressed as follows:

where h is the height of the air above the free surface.
Mi dsPcijkrjnk + I dscprrjr, , (38) Using this formulation, the horizontal water-particle ve-

locity is discontinuous across the air-water interface, and
where CiEA is the Levi-Civita function. rj is the moment the vertical water-particle velocity is continuous across
arm and Cijkrjnk is the indicial-notation representaiton the air-water interface.
of the cross product of the moment arm with the unit
normal.

Results
The surface integrals for the forces and moments

are calculated using the panelized geometry. The den-
sity, pressure, and water-particle velocities are interpo- 5365 geometry (Athena)
lated onto the panels. The integrands are evaluated and A three-dimensional numerical simulation that uses
summed over the surface of the body. 850x192x128= 20,889,600 grid points, 5x8x4=160 sub-

domains, and 160 nodes has been performed on a Cray
WAVEMAKER XT3. The length, width, depth, and height of the com-

putational domain are respectively 4.0, 1.0, 1.0, 0.5 ship
Here, we highlight the formulation of a wavemaker. lengths (Lo). Grid stretching is employed in all direc-

Let q7(x, t) denote the free-surface elevation as function tions. The smallest grid spacing is 0.0020 near the ship
of position x and time t, then and mean waterline, and the largest grid spacing is 0.020

I7(x, t) = af(t) cos(kx + at) in the far field. The Froude number is F, = 0.4316.
aTwo incident wavelengths are considered: A = 1/2 and

+ 2kaf(t) cos(2kx + 2at) (39) A = 2. In both cases, the wave steepness is H/A = 0.06,

where a is the wave amplitude, k is the wavenumber, and where H = 2a is the wave height. The equations for

or is the encounter frequency. The preceding formula is the wavemaker are imposed ahead of the ship over the

accurate to second order in wave steepness. f(t) is an ad- range 1 < x < 1.5. Initial transients are minimized by
factor that 1 ramps uthe wave amplitude slowly ramping up the free-stream current and the inci-ustment ftothtslowly rps up th aeapltd dent wave amplitude. The period of adjustment is To' =

(see Equation 31). The encounter frequency is a function 0 w F mltion, The nodio atmet is

of the intrinsic wave frequency w, the wavenumber, and 0.5. For this simulation, the non-dimensional time step is
At=0.0005. The numerical simulation runs 10,000 time
steps corresponding to 5 ship lengths. Each simulation

a = - kUo(t) (40) requires about 80 hours of wall-clock time. The numer-
ical results are compared to experimental measurements
that had been performed at the Naval Surface Warfare

2 = tanh(kd) (41) Center (Ratcliffe & Dommermuth 2007).
Figures 1 show perspective views of the predicted

where d is the water depth. The speed of the ship is free-surface elevations at time t = 5 for the two cases.
slowly ramped up from rest using the adjustment factor. The color bar denotes free-surface elevations between -

0.02 to 0.02 for the short-wave case and -0.04 to 0.04
UO(t) = f(t) . (42) for the long-wave case. The incident wave propagates

For z < q , the horizontal and vertical components of the from the inlet to the exit with no attenuation in amplitude.
water-particle velocity are This indicates that the effects of numerical dissipation

are minimal.
u (x, z, t) = -a shk) f d) cos(kx + at) The predicted and measured free-surface elevations

as a function of time at are shown in Figures 2. The pre-

w(x, z, t) = sinh(k(z + d)) sin(kx + ut) . dicted free-surface elevations are ramped up to their full
-awft) sinh(kd) height. This minimizes transients associated with start-

(43) ing up the numerical wavemaker. The measured free-



surface elevations show slight irregularities that are as- 5514 5613

sociated with limitations with the wavemaker at DTMB. amplitude frequency amplitude frequencyHeave 0.3667 13.95 0.02857 14.53

Figures 3 show the predicted vertical force corn- Pitch 50 13.95 50 14.53

pared to measurements. The displacement has been sub- Roll 650 8.525 650 8.877

tracted out from the results. As the model ramps up to Table 1: Forced-motion parameters.
full speed, a mean suction force is induced on the model.
The oscillatory portion of the force is dominated by hy-
drostatics. For the short-wave case, the numerical pre- 5514 5613

dictions show slightly more sinkage than had been mea- At N At N

sured. The oscillatory portions of the forces agree well. Heave 0.0005 4,000 0.00025 10,000
Pitch 0.0005 4,000 0.0005 4,000

Figures 4 show the predicted drag force compared to Roll 0.00025 8,000 0.00025 8,000
measurements. In the case of the numerical simulations,
the drag is initially zero because the model is ramped up Table 2: Time step and number of time steps.
to full speed from zero forward speed. The primary har-
monics that are evident in the plots are due to the incident
wave forces. We speculate that the higher harmonics that
are evident in the laboratory results, which are especially at ofth Athena Tis wit asorwrd
evident for the longer wave, are due to vibrations in the animations of the Athena moving with constant forward
structure that is used to restrain the model. Another pos- speed into head seas.
sibility is the variation in the incident wave amplitude in
the experiments. Structural vibrations could be assessed
by installing accelerometers on the model. The variation Conclusions
in the incident wave amplitude could be accounted for in
the numerical simulations by using wave-probe data as In terms of progress, it is interesting to consider the re-
input. In general, numerical predictions and laboratory sults of research reported in earlier ONR symposiums.
measurements agree well. Dommermuth et al. (1998) study the flow near the bow of

model 5415 using a variable-density, cartesian-grid for-
5514 and 5613 geometries mulation. A body force is used by Dommermuth et al.

(1998) to impose the body boundary condition. The nu-
Forced-motion studies of models 5514 and 5613 merical results of Dommermuth et al. (1998) barely cap-

have been performed. The models are forced to move ture the initial onset of wave overturning near the bow.
in heave, pitch, and roll while moving with constant Sussman & Dommermuth (2001) continue to develop
forward speed. The Froude number for both hull interface capturing methods. Once again, comparisons
forms is F, = 0.3. For the heave and pitch stud- are shown to the bow flow of model 5415. The results
ies, a plane of symmetry is used on the centerplane do not show significant improvement over their earlier
of the computational domain. The heave and pitch results. However, their calculations of the breakup of
simulations use 680x192x128=16,711,680 grid points a turbulent spray sheet illustrate a novel application of
and 4x8x4=128 sub-domains. The forced roll simu- interface-capturing methods. Dommermuth et al. (2004)
lations use 680x384x128=33,423,360 grid points and use two methods to study the flow around model 5415, a
4x8x4=128 sub-domains. The length, width, depth, and vertical strut, and a bluff wedge. The first method uses
height of the computational domain are respectively 3.0, free-slip conditions on the hull in combination with a hy-
1.0, 1.0, 0.5 ship lengths (Lo) for the heave and pitch brid level-set and VOF interface-capturing method. In
studies. The width of the domain is doubled for the addition, adaptive mesh refinement (AMR) is used to im-
roll simulations. All of the simulations use 128 pro- prove grid resolution near the hull and free-surface inter-
cessors on a Cray XT3. For model 5514, the full-scale face. Their preliminary results illustrate the efficiency
length and forward speed are respectively Lo = 142.Om of AMR. The second method uses body-force and VOF
and U0 = 11.20m/s. For model 5613, Lo = 154.Om formulations on a cartesian grid with no grid stretching.
and U0 = 11.66m/s. Table I summarizes the non- The results show more fine-scale detail than the earlier
dimensional amplitudes and frequencies of motion. The studies. The predicted free-surface elevations compare
heave amplitudes correspond to ranges of motion that are well with experiments, but the body-force method is too
80% of the mean drafts. Table 2 summarizes the time "sticky" because too much fluid is dragged with the ship
step and the number of time steps. Smaller time steps hull. Based on these results, Dommermuth et al. (2006)
are used for the roll simulations and one heave case due use free-slip boundary conditions to impose the body
to Courant-stability considerations. Several animations boundary condition to reduce stickiness. The VOF algo-
of these simulations have been prepared at the flow visu- rithm is generalized to include free-slip conditions on the
alization center at ERDC. The animations are accessible ship hull. The grid is stretched along the cartesian axes to



improve grid resolution. Numerical predictions compare "The numerical simulation of ship waves using
well with laboratory measurements of ship models mov- cartesian-grid and volume-of-fluid methods,"
ing with constant forward speed. The present research Proceedings of the 26th Symposium on Naval
implements forced motions and ambient waves. As the Hydrodynamics, Rome, Italy, 2006, to appear.
ship moves, the portion of the cartesian grid that is cut
by the ship hull is continuously calculated. The inherent Dommermuth, D. G., Sussman, M., Beck, R. F, O'Shea, . i.,
simplicity of the cartesian-grid formulation is retained Wyatt, D. C., Olson, K., & MacNeice, P, "The numerical
even though the ship moves through the grid. Ambient simulation of ship waves using cartesian-grid methods

waves are generated by forcing the flow in the water and with adaptive mesh refinement," Proceedings of the 25th
the air based on analytic solutions for two-phase flows. Symposium on Naval Hydrodynamics, St. John's,
The procedure is illustrated using regular waves, but it is Newfoundland and Labrador, Canada, 2004, pp. 1-17.
general enough to model a seaway. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., & Zaleski, S.,

"Volume-of-fluid interface tracking with smoothed
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(a) A (b) A 2

Figure 1: Model 5365 (Athena) perspective view of the free surface.
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Figure 2: Model 5365 (Athena) wave elevation at x = 1.5.
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Figure 3: Model 5365 (Athena) vertical forces.
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Figure 4: Model 5365 (Athena) drag forces.


